When news is announced on the discovery of an archaeological find, we often hear about how the age of the sample was determined using radiocarbon dating, otherwise simply known as carbon dating. Deemed the gold standard of archaeology, the method was developed in the late s and is based on the idea that radiocarbon carbon 14 is being constantly created in the atmosphere by cosmic rays which then combine with atmospheric oxygen to form CO2, which is then incorporated into plants during photosynthesis. When the plant or animal that consumed the foliage dies, it stops exchanging carbon with the environment and from there on in it is simply a case of measuring how much carbon 14 has been emitted, giving its age. But new research conducted by Cornell University could be about to throw the field of archaeology on its head with the claim that there could be a number of inaccuracies in commonly accepted carbon dating standards. If this is true, then many of our established historical timelines are thrown into question, potentially needing a re-write of the history books.


Get the Job



Importance of Radiocarbon Dating | Career Trend
One of the most important dating tools used in archaeology may sometimes give misleading data, new study shows - and it could change whole historical timelines as a result. The discrepancy is due to significant fluctuations in the amount of carbon in the atmosphere, and it could force scientists to rethink how they use ancient organic remains to measure the passing of time. A comparison of radiocarbon ages across the Northern Hemisphere suggests we might have been a little too hasty in assuming how the isotope - also known as radiocarbon - diffuses, potentially shaking up controversial conversations on the timing of events in history. By measuring the amount of carbon in the annual growth rings of trees grown in southern Jordan, researchers have found some dating calculations on events in the Middle East — or, more accurately, the Levant — could be out by nearly 20 years. That may not seem like a huge deal, but in situations where a decade or two of discrepancy counts, radiocarbon dating could be misrepresenting important details. This carbon — which has an atomic mass of 14 — has a chance of losing that neutron to turn into a garden variety carbon isotope over a predictable amount of time.


What are alternatives to carbon dating?
Feb 14 Read Feb 12 Read Feb 13 Read Jan 29 Read



This is how carbon dating works: Carbon is a naturally abundant element found in the atmosphere, in the earth, in the oceans, and in every living creature. C is by far the most common isotope, while only about one in a trillion carbon atoms is C C is produced in the upper atmosphere when nitrogen N is altered through the effects of cosmic radiation bombardment a proton is displaced by a neutron effectively changing the nitrogen atom into a carbon isotope.